結城浩の「コミュニケーションの心がけ」

Vol.166 結城浩/『不安について』 - 結城浩ミニ文庫/仕事の心がけ/未来につながる仕事/

2015/06/02 07:00 投稿

  • タグ:
  • 仕事の心がけ
  • 結城浩ミニ文庫
Vol.166 結城浩/『不安について』 - 結城浩ミニ文庫/仕事の心がけ/未来につながる仕事/

結城浩の「コミュニケーションの心がけ」2015年6月2日 Vol.166

はじめに

おはようございます。 いつも結城メルマガをご愛読ありがとうございます。

歴史的に暑かったという2015年の5月が過ぎ、 早いもので今年ももう6月なのですね。 日付は進むけれど、仕事はなかなか進みません(涙)。

先週末には個人的にいろいろとありまして、 今週の頭はちょいとお疲れ気味です。

しかし! そんなことも言っていられませんので、 気持ちをさくっと切り換えて、 今日もていねいに進みましょう。

そうそう、今週は高校生向けの講演会があるのです! 若い人に向けておしゃべりできるのは、とても楽しみ。 私自身がそのプロセスの中で学ぶことが多いからでしょうか。 しっかり準備し、備えていきたいと思います。

なお、この講演会はその学校内のクローズドなイベント…… というか特別授業のようなものですから、一般参加はできません。 講演内容については、うまく読み物という形にまとまりましたら、 この結城メルマガで配信したいと思います。

 * * *

画像の話。

Unsplash.comというサイトが気に入っています。

 ◆Unsplash
 https://unsplash.com

このサイトは、

 ・高画質の美しい写真を、
 ・無条件で利用できるようなライセンスで公開し、
 ・定期的に更新する

という特徴を持っています。

通常の画像サイトですと、画像を使うときにクレジットを提示したり、 サイトへのリンクが必要になったりするのですが、 この Unsplash.com は違います。

 ◆Unsplash License
 https://unsplash.com/license

"do whatever you want"というとおり、 何でも自由に好きにして良いというライセンスです。 クリエイティブコモンズのCC0というものですね。

定期的に更新(10日間に10枚ずつ)していますので、私も定期的にチェック。 お気に入り画像として保存し、 ちょっとした雰囲気を出したいときに使っています。

 * * *

わからなくなったときの話。

学んでいて、わからなくなったときに、

 あああっ!
 だからオレはダメなんだあああっ!
 こんなこともわからなくてえええっ!
 オレは!ダメッ!ダメなんだああああっ!

と思うのはやめたほうがいい。

わからなくなったときは、 特に、わからなくなって泣きそうなときは、 ぐっと、涙をこらえて、

 どこまでは、わかるか。
 どこから、わからなくなったか。

を見極めるのがいい。

それはときに厳しい現実を見ることになるけれど、 幻想の中に生きるよりはいい。

……と、夜中に勉強しているときによく自分に言い聞かせます。 難しくてわからないときって、何というか、 ちゃぶ台をひっくり返したくなることがあるんですよね。 そして攻撃を自分に向けてしまう。

でも、冷静になってみると、そうやっても話は進まない。 だから、ぐっとこらえて《見極める》ことが大事なんだと思う。

 * * *

確率の話。

確率1/2で当たるクジを2回引いたとします。 そのとき、一度も当たらない確率はいくら?

二回とも外れる確率ということだから、 もちろん、1/4 = 0.25です。

では、確率1/100で当たるくじを100回引いたとき、 一度も当たらない確率はいくら?

確率1/100なんだから、100回引いたら1回くらいは当たりそうなものですよね。 でも一度も当たらない確率は意外に高い。 外れる確率0.99の100乗なので、 計算すると約36.6%の確率で一度も当たらないんです(!)

さらに一般化すると、1/nの確率で当たるクジをn回引いたときに 一度も当たらない確率の極限は1/eに収束するようです。

 ◆数学メモ
 http://mathmemo.textfile.org/?20150516222106

確率は直観を裏切ることが多いもの。

同じように統計も難しい。 たとえば「あるコインを2500回投げたとき、表が1300回出た」とします。

コインが偏っていなければ、 表が出るのは1250回ぐらいでしょう。 でも、やってみたら表が1300回出たとする。 表が1300回ということは、1250回より50回も多い。 では、「このコインは偏っている!」と言えるのだろうか。

実は、偏っていないコイン(表が出る確率が正確に0.5であるコイン)でも、 《2500回投げる》という試行を行ったとき、 《表が1200回〜1300回の範囲に入る確率》は約95%であることが計算からわかります。

 ◆数学メモ
 http://mathmemo.textfile.org/?20150518124157

難しいものですね。

 * * *

理解する話。

結城が「群の定義」を初めて明確に理解したのは、 それを「自分の本」に書いたときである。

自分が理解していないことを自分の本には書けない。 自分が理解して初めて書くことができる。

文章を書くときにはいつも、

 この文章の内容を、
 自分は理解して書いているか?

という問いかけを行う。 問いかけながら文章を書いているといってもいい。

 この文章の内容を、
 自分はほんとうに理解して書いているか?

理解しているはずの内容を文章に書く。 文章を読み返して意味が通じるかを考える。 文章を読みつつ複雑な構造物を作り直し、 それが正しいかを確認する (そしてできれば、美しいかどうかも確認する)。

いわば、執筆は「一人で行うゼミ」なんだね。

 * * *

さて、それでは今週の結城メルマガを始めます。

今回の結城メルマガは、仕事に関する読み物が多めです。 全体として何となく矛盾をはらんでいるような、 通常通りのような、そんな一通となっています。

どうぞ、ゆっくりお楽しみください!

目次

  • はじめに
  • 『不安について』 - 結城浩ミニ文庫
  • 経営者のなすべきこと - 仕事の心がけ
  • どの仕事をいつ行うか - 仕事の心がけ
  • あなたのこと、大好き!
  • 未来につながる仕事
  • おわりに
 

ここから先は有料になります

ニコニコポイントで購入する

チャンネルに入会して購読する

  • この記事は過去記事の為、今入会しても読めません。ニコニコポイントでご購入下さい。

コメント

コメントはまだありません
コメントを書き込むにはログインしてください。

いまブロマガで人気の記事

継続入会すると1ヶ月分が無料です。 条件を読む

結城浩の「コミュニケーションの心がけ」

結城浩の「コミュニケーションの心がけ」

月額
¥880  (税込)
このチャンネルの詳細